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ABSTRACT
The forecast for oil production from an oil reservoir is made with the
aid of reservoir simulations. The model parameters in reservoir sim-
ulations are uncertain whose values are estimated by matching the
simulation predictions with production history. Bayesian inference
(BI) provides a convenient way of estimating parameters of a math-
ematical model, starting from a probable distribution of parameter
values and knowing the production history. BI techniques for his-
tory matching require Markov chain Monte Carlo (MCMC) sampling
methods, which involve large number of reservoir simulations. This
limits theapplicationofBI for historymatching inpetroleumreservoir
engineering, where each reservoir simulation can be computation-
ally expensive. To overcome this limitation, we use polynomial chaos
expansions (PCEs), which represent the uncertainty in production
forecasts due to the uncertainty in model parameters, to construct
proxymodels formodel predictions. As an applicationof themethod,
we present history matching in simulations based on the black-oil
model to estimate model parameters such as porosity, permeabil-
ity, and exponents of the relative permeability curves. Solutions to
these history matching problems show that the PCE-based method
enables accurate estimation of model parameters with two orders
of magnitude less number of reservoir simulations compared with
MCMCmethod.
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1. Introduction

The ever-increasing demand for petroleum necessitates efficient management of existing
oil and gas fields and development of new fields. The forecast of oil production from an
oil reservoir is made with the aid of reservoir simulations, which predict the flow of oil,
gas, and water through porous media [1]. Accurate production forecasts using reservoir
simulations require precise knowledge of the properties of the reservoirs [2]. The sub-
surface of a petroleum reservoir is invariably complex and heterogeneous [3]. Because
measurements are limited to discrete locations, geological properties and initial conditions
are usually determined by solving inverse problems using the historical production data.
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Solving inverse problems to estimate reservoir properties by matching the predictions of
reservoir models to the production data is called history matching.

The traditional method employed in industry to perform history matching is based
on manual selection of model parameters to match production history [4]. The man-
ual approach requires experience and often becomes unfeasible for complex models that
involve a significant number of uncertain model parameters. Nowadays, the process of
history matching has been automated [5], wherein the inverse problems are solved to esti-
mate the model parameters by using the production data. Various methods to solve the
inverse problems can be broadly classified into (i) deterministicmethods and (ii) stochastic
methods. A particular method can be classified as deterministic or stochastic depending
upon the type of objective function of the inverse problem. The deterministic methods
predict single values of model parameters such that the mismatch between predicted and
observed data is minimized [6]. On the other hand, stochastic methods model the uncer-
tainties in model parameters with appropriate probability distributions and predict their
estimated values with associated uncertainty. The deterministic methods such as the gra-
dient descent method require the computation of derivatives, which involves an enormous
programming effort. Though single values of model parameters, as estimated by determin-
istic methods may be useful, they are not sufficient to manage a reservoir as they do not
provide an estimation of risks. Also for many parameters and non-linear complex models,
gradient methods tend to obtain a local minimum instead of finding a global minimum.

Various algorithms have been developed and successfully implemented for history
matching in a petroleum reservoir. Genetic algorithms [7] and Evolutionary strategies [8]
are some state-of-the-art techniques that have been reported in the literature to perform
historymatching.While theGenetic algorithms honour the complex geological constraints
of the reservoir model, they are slow in convergence to obtain a global minimum and
require a large number of deterministic simulations for evaluation of the forward model.
To avoid the slow rate of convergence of the Genetic algorithms and the Evolutionary
strategies, Bayesian inference (BI) based approaches have been developed in petroleum
reservoir history matching. In BI, one starts with a prior distribution of model param-
eters, which is updated using the Bayes’ rule, taking into account the production data,
to get a posterior distribution of the model parameters [9]. The most general method to
implement BI is through the MCMC method, which is applicable to Gaussian and non-
Gaussian prior distributions. However, due to the prohibitive computational cost of the
MCMC method, computationally efficient approaches of performing Bayesian inference,
such as the EnsembleKalmanFilter (ENKF) [4,10], have been developed and suchmethods
are based on various simplifying assumptions. For example, the ENKFmethod implements
BI by assuming Gaussian priors [11]. In certain cases, however, ENKF leads to an overes-
timation of uncertainty in the production forecasts [12]. Also, few other modified form
of ENKF have been used to perform history matching, these techniques are derived from
Bayesian inference and are formulated based on the linear or Gaussian approximations. A
detailed review of the various methods used in literature to perform history matching has
been done by Oliver et al. [8] with the limitations of eachmethod. Bayesian inference gives
a quantitative assessment of uncertainty by providing a posterior probability distribution
of model parameters instead of providing a single value of model parameters. The poste-
rior distribution can be used to estimate mean, standard deviation, and other higher-order
moments of the model parameters [13].
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The existing Bayesian inference methods to solve inverse problems have a wide range of
applications such as in heat transfer [14], climate modelling [15], and geophysics [16]. The
most commonly usedmethods to sample from the posterior distribution are the sequential
Monte Carlo approach [17] and the Markov Chain Monte Carlo (MCMC) method [18].
The Bayesian inference along with MCMC is considered to be the standard method for
history matching in reservoir modelling [12,19] but it cannot be used directly for heavy
reservoir simulation models due to the requirement of a large number of simulations
which will be computationally expensive. In the context of reservoir simulation, various
studies have been done to show the use of the MCMC method to generate realizations of
the permeability fields [18]. However, MCMC methods involve a large number of simu-
lation runs to sample the posterior distribution. In practical circumstances, where every
single assessment of a reservoir model is computationally expensive, this limits the appli-
cability of Bayesian inference to obtain a global convergence for history matching. While
faster methods such as the Randomized maximum likelihood (RML), can also be used to
sample from the posterior distribution, it is an approximation to MCMC. RML is based
on the assumption that the data is linearly related to the model. Moreover, given the fact
that evaluations with PCE are extremely fast, the use of MCMC along with PCE does not
significantly increase the computational overhead.

The drawback of high computational cost in Bayesian inference using MCMC can be
overcome by using proxy models to accelerate model predictions. One such method to
generate a proxy model to solve inverse problems is the experimental design (ED) method
[20]. In the ED method, a response surface is fit to the model predictions from a smaller
set of deterministic simulations, and this response surface acts as a proxy for the reservoir
model. The drawback of the ED method is that it does not take into consideration the
probability distribution of model parameters but gives equal weight to all deterministic
simulations, making it less reliable to act as a proxy model [20]. Moreover, as shown by
Lawal [21], the use of ED methods for proxy modelling in the petroleum industry can
violate fundamental physics and do not preserve the correlation between otherwise related
variables.

The limitationsmentioned above of the EDmethod have been overcome using the poly-
nomial chaos expansion (PCE) method, in which a stochastic process is expressed by a
series of orthogonal polynomials of random variables [22]. In the PCE method, the model
parameters are considered to be uncertain random variables. New stochastic dimensions
are used for each of the uncertain parameters to define their probability density func-
tions. PCEs are used to characterize the dependence of model predictions on uncertain
model parameters through these stochastic dimensions. The coefficients of PCEs can be
obtained by projectingmultiple solutions of the deterministic simulations onto the polyno-
mial chaos basis [20,23]. The PCEmethod to form a proxy model guarantees convergence
as the degree of the polynomials in the PCE proxy is increased [7]. While Bayesian Linear
Regression can also be used, the coefficients of PCE easily provide uncertainty in model
parameters and help us to identify individual and coupled contributions of the uncertainty
in model parameters to the total uncertainty in model predictions [24]. While Gaussian
processes [25] proxymodels are also widely used for the development of surrogate models,
they are based on the Gaussian hypothesis and generally do not utilize prior distribution
information while PCE-based proxymodels are based on orthonormal polynomials which
are chosen based on prior distribution and are more computationally efficient [26]. For
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an accurate sampling of the posterior, we have used MCMC which is the most general
method for sampling and does not require approximations for distributions. Hence, it can
be used as a proxy model in petroleum engineering. While PCE method has been used
as a proxy model in various field such as structural mechanics [27], fluid flow [28], react-
ing flows [24,29] and petroleum engineering [30,31] for uncertainty quantification, their
potential for accelerating Bayesian inference in petroleum engineering has not been fully
leveraged.

Marzouk et al. [9] have assessed the utility of the PCEmethod to solve the inverse tran-
sient diffusion problem to estimate source location using Bayesian inference. In petroleum
engineering, Bazargan et al. [32] have shown the feasibility of PCE-based proxy model for
estimating heterogeneous reservoir permeability using Bayesian inference. So far, Bayesian
inference has been used to predict various reservoir parameters such as porosity and per-
meability [4,33]. In the current work, we show that PCE-based proxy model can be used to
accelerate Bayesian inference to estimate a variety of model parameters such as geological
properties like porosity and permeability and the flow properties like the exponents of the
relative permeability curves of oil and water. We also show the utility of the PCE method
to determine sensitivities of model predictions to model parameters, which helps us in
choosing the relevant production data to predict the model parameters accurately. The
sensitivity analysis of model predictions to the model parameters also helps us in deciding
the parameters that need to be measured with more accuracy. Hence, it is important to
note that besides accelerating the Bayesian inference method, the PCE proxy also helps in
finding the sensitive parameters to perform history matching. Moreover, the inverse prob-
lems that we consider in the current work are new and these can be used as benchmark
problem for Bayesian inference based history matching.

The novelty of our work is to accelerate forward computation to perform historymatch-
ing in petroleum reservoirs rather than solving the full deterministic models. To achieve
the same, we have used Bayesian inference with MCMC along with PCE. We have used
a proxy model using PCE to directly obtain the forward model instead of running the
deterministic simulations. Our approach is different from other methods in which we can
draw millions of samples from the posterior distribution and obtain the forward model
efficiently to calculate the likelihood using the PCE proxy. We have also shown the conver-
gence of themoments in amodel problem obtained from the PCE proxy with themoments
obtained from the standard Monte Carlo method. We have proposed a general framework
that can be used for any reservoir model irrespective of the probability distribution of the
model parameters.We have shown the applicability of our framework for various reservoir
models, including a reservoir scale field-based model PUNQ-S3.

In the present work, we show the application of Bayesian inference to predict model
parameters using three different reservoir models. In the first problem, we estimate the
value of permeability and porosity in the standard SPE1CASE2 problem of SPE’s Compar-
ative Solution Projects [34]. Using the PCE proxy, which we validate withMC simulations,
we perform sensitivity analysis to show the effect of variability in porosity and permeabil-
ity on the model predictions. We choose the most sensitive model parameters based on
the sensitivity analysis and predict a better posterior estimate of porosity and permeability
by solving an inverse problem using historical production data. For the second case, we
choose a water flooding problem with a high degree of heterogeneity to show the applica-
tion of Bayesian inference to predict the exponents of relative permeability curves of oil and
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water. Finally, for the third case, we choose a large dimensional real field-based reservoir
model PUNQ-S3 with 26 uncertain model parameters.

We start by introducing the governing equations for the reservoir simulation models
in Section 2. Next, we describe the history matching methodology using Bayesian infer-
ence followed by the stochastic methodology to form a PCE proxy. In Section 3, we then
explain the deterministic simulations of the reservoir models. Next, we generate the PCE-
based proxy and validate the proxy with Monte Carlo simulations. Using the PCE proxy,
we perform a sensitivity analysis to estimate the most sensitive model parameters. Finally,
we present history matching to predict those uncertain model parameters on which the
model predictions are most sensitive. At last, we conclude our work in Section 4.

2. Methodology

In this section, we discuss the Bayesian inference approach using the PCE proxy for
parameter estimation in the reservoir simulation model. We show the application of
the method to three different three-dimensional reservoir models, which we discuss in
detail in Section 3. First we review the governing equations used in reservoir simulations.
Thereafter, we discuss the application of Bayesian inference method for history matching,
followed by a discussion on the use of PCE proxy to accelerate Bayesian inference method.

2.1. Governing equations for fluid flow

The governing equations for fluid flow in reservoir simulations are given by the black-
oil model. This model considers three phases, oil, water, and gas. The oil and gas are two
hydrocarbon components, and the third component being water. The model assumes that
nomass transfer takes place between thewater phase and the other two phases. Also, the oil
component is considered to have low volatility; hence, it remains in the oil phase. However,
the gas is assumed to be miscible in oil and immiscible in water. Gas miscibility in oil
depends on pressure according to a specified phase behaviour. The governing equations of
black-oil model consist of the followingmass conservation equations for gas, oil, and water
components [35],

∂(φρgSg + φρgoSo)
∂t

+ ∇ · (ρgvg + ρgovo) = qg , (1)

∂(φρoSo)
∂t

+ ∇ · (ρovo) = qo, (2)

∂(φρwSw)
∂t

+ ∇ · (ρwvw) = qw. (3)

Here ρ denotes the density, v the velocity, q is the source or sink term which correspond to
injection and production wells. φ is the porosity of the reservoir and S denotes the satura-
tion of various phases. In Equations (1)–(3), ∇· is the divergence operator in three spatial
dimensions (x, y, z) and t refers to time. In these equations, the subscripts g, o, and w refer
to the gas, oil, and water phases respectively and go refers to the gas dissolved in oil phase.
The saturations of gas, oil and water phases are given by,

Sg + So + Sw = 1. (4)
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The flow velocities of various phases in Equations (1)–(3) are given by the Darcy’s law,

vi = −Kkri
μi

(∇pi − ρgg∇z), i = g, o,w. (5)

In Equation (5), K is the absolute permeability, kri is the relative permeability of the i-th
phase, p is the pressure, g is the acceleration due to gravity term, z is the depth of the reser-
voir, andμ is the viscosity. The individual phase pressures p are related to two independent
capillary pressures inside a reservoir which are defined as,

pcow = po − pw, (6)

pcgo = pg − po. (7)

The third capillary pressure is a combination of the other two. That is,

pcgw = pg − pw = pcgo + pcow . (8)

The capillary pressures depend on saturation and are determined experimentally. In
our simulations, the capillary pressure is neglected and hence, po = pw and pg = po.
The relative permeability kri also depends on saturation and is given by various mod-
els or calculated empirically. One such model is the Brooks-Corey [36] model. Using the
Brooks–Corey model, the relative permeabilities of water (krw) and oil (krow) are given by

krw(Sw) = korw(Swn)
Nw , (9)

krow(Sw) = (1 − Swn)Now , (10)

respectively, where

Swn = Swn(Sw) = (Sw − Swir)
(1 − Swir − Sorw)

. (11)

Here, Sw is the water saturation, Swir is the irreducible water saturation, Sorw is the irre-
ducible oil saturation, korw is the endpoint of water relative permeability curve, and, Nw
and Now are empirical constants.

Equations (1)–(7) are a set of nine equations using which nine variables Sg , So, Sw, vg ,
vo, vw, pg , po and pw can be solved along with the prescribed initial and boundary con-
ditions. For all our simulations, we use ‘Flow’ simulator of Open Porous Media (OPM) 1

to solve the deterministic reservoir simulation equations. ‘Flow ’ is an open-source, black-
oil reservoir simulator, which is a fully implicit and capable of running industry-standard
reservoir simulation models. We have compared the simulation output of ‘Flow’ simula-
tor with commercially available ‘Eclipse’ software, and the results match well as shown in
Figure A2 in Appendix 2.

2.2. Historymatching using Bayesian inference

The parameters of the black-oil model are often unknown and are estimated by solving
inverse problem knowing the production history. In the present work, we use Bayesian
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inference based history matching to estimate the model parameters. To illustrate the use
of Bayesian inference for history matching, we here consider a forward problem,

d = G(Z). (12)

Here, the function G represents the reservoir model, d denotes the predicted value of
observable data such as flow rates and well-pressures obtained from the reservoir model
corresponding to model parameters Z such as porosity, permeability, etc. In the Bayesian
framework, the unknownmodel parameters Z are considered to be random variables, and
probability is used to describe the parameter’s true values. The unknown model parame-
ters are assumed to have a prior probability density of π(Z) before observing the data d.
The a priori information of unknown model parameters is based on available geological
or experimental data, physical limits of the model parameters. For example, a prior distri-
bution of porosity can be assumed knowing that porosity lie between 0 and 1 and taking
into account well logs or reservoir cores. Bayesian inference entails prediction of poste-
rior probability density of model parameters π(Z|dobs) taking into account the observed
data dobs. The observed data dobs differs from the predicted data d due to measurement
uncertainties. The measurement uncertainties are assumed to be additive,

dobs = d + e = G(Z)+ e, (13)

where e denotes measurement errors that are independent and identically distributed.
Therefore, the probability density of observed data given the model parameters is
π(dobs|Z) = πe(dobs − G(Z)), where πe is the probability density of measurement error;
π(dobs|Z) is called the likelihood function. The measurement errors for different observa-
tions can be assumed to be uncorrelated and hence the likelihood function can be taken
as

π(dobs|Z) =
∏
i
ϕi(dobs,i − di). (14)

Here,ϕi denotes the probability density of i-th component of e, and di and dobs,i respectively
the i-th component of predicted and observed data. Usually, the measurement errors are
Gaussian and independently distributed, therefore likelihood function can be simplified to

π(dobs|Z) ∝
∏
i
exp

(
−1
2

∑ (dobs,i − di)2

σ 2

)
. (15)

Here σ is the standard deviation of the measurement noise.
The inverse problem of history matching deals with the calculation of the probability

density of model parameters given observed data π(Z|dobs). To this end, we employ the
Bayes’ rule

π(Z|dobs) = π(dobs|Z)π(Z)∫
π(Z|dobs)π(Z)dZ

. (16)

We use the Metropolis-Hastings algorithm [37] to sample the posterior density π(Z|dobs).
The Metropolis-Hastings algorithm is a Markov chain Monte Carlo (MCMC) method
based on the principle that the sampling is done from a Markov chain in such a way that
the sampled distribution converges to the target distribution at equilibrium state. In the
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MCMC method, the sampling is initiated with an initial value of Zo. Then, the next value
Z∗ is sampled using a proper proposal distribution, which is a conditional distribution on
the current state. Thereafter, the ratio of the probability of the new proposed sample to the
probability of the current state is calculated as

α = π(Z∗)
π(Zt−1)

. (17)

If the new sample proposed is more likely than the existing sample (α > 1), the sample is
accepted, else the sample is accepted with probability α. This procedure is repeated until a
stationary state is achieved, and the Markov Chain approaches the target distribution after
a sufficient burn-in period.

2.3. The PCE-based proxy for acceleration of Bayesian inference

The MCMCmethod discussed in the previous section involves a large number of compu-
tations of the forward model (Equation (12)), which makes this method computationally
expensive. In the current work, we use PCE-based proxy model to accelerate the MCMC
method. We first obtain the PCE-based proxy model for the exact forward problem, for a
prior distribution of model parameters Z. Thereafter, the PCE proxy is used in theMCMC
method, instead of solving the exact forward problem, while sampling from the posterior
distribution. The use of the PCE proxy enables sampling from the posterior distribution in
significantly less time.

In the current work, the model parameters such as porosity, permeability, and the expo-
nents of the relative permeability curves are considered to be uncertain random variables.
To create a proxy model for the model predictions in terms of the uncertain model param-
eters, we use a PCE-based non-intrusive stochastic method [29]. First, we express the
random variables in terms of additional stochastic dimensions. Next, deterministic sim-
ulations based on the black-oil model are performed for different samples of the random
model parameters. The results of these deterministic simulations are used to construct the
PCE proxy of model predictions such as oil production rate, gas production rate, and water
production rate. These PCE proxies are used to accelerate the inverse problem by calculat-
ing the model predictions using its proxy, instead of solving the forward problem. These
PCE proxies can also be used for finding sensitivity of model predictions to variability in
model parameters.We now explain themathematical formulation of the PCE-based proxy.

2.3.1. Mathematical formulation of the PCE proxy
We use a non-intrusive approach to form a PCE proxy for our model predictions. For a
detailed discussion of the method, one can refer to Reagan et al. [29], which we briefly
summarize here. In the PCE method, we propagate the variability in model parameters to
model predictions by introducing additional stochastic dimensions ξ = [ξ1, ξ2, ξ3, . . . ξd],
corresponding to d uncertain model parameters. ξ ∼ N(0, 1) is selected as a random vari-
able with standard normal probability density function for normally distributed model
parameters. Therefore, a normally distributed model parameter can be written in terms of
the random variable ξ as

w = μw + σwξ , (18)
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and, a log-normally distributed model parameter w can be expressed in terms of ξ as

w = exp(μw + σwξ) (19)

where μw is the mean value of parameter w and σw is the standard deviation. The model
predictions such as oil production rate, gas production rate and water production rate,
denoted by fi are expressed using PCEs [23] as

fi(x, y, z, t, ξ) =
∞∑
k=0

fi,k(x, y, z, t)
k(ξ), (20)

where, fi,k represents the coefficients of the i-th model predictions at that location and time
and 
k are the basis functions of the PCE. The choice of the basis functions depends on
the nature of the distribution of random variables. The basis functions are orthogonal to
each other with the probability density as the weighing function. In the present case, the
random variables are assumed to follow normal and log-normal distribution. Therefore,
the polynomials chosen are Hermite polynomials [29].

For one uncertain normally distributed parameter, the basis functions
k = ψk are one-
dimensional (1-D) Hermite polynomials.

ψ0 = 1, ψ1 = ξ , ψ2 = ξ2 − 1, ψ3 = ξ3 − 3ξ . (21)

For practical purpose, the infinite series in Equation (20) is truncated to a fixed order P
which is the order of the highest polynomial required to construct the PCE. Therefore, for
the case of one uncertain parameter, the total number of terms in PCE is P+ 1. In general,
for d dimensions and highest order of polynomial as p, the total number of terms in PCE
in Equation (20) is P+ 1 given as

P + 1 = (p + d)!
p!d!

. (22)

The PCE basis functions 
k(ξ) are d-dimensional Hermite polynomials which are the
product of one dimensional Hermite polynomials. The Hermite polynomials involve
multi-indexmi

k.


k(ξ) =
n∏

i=1
ψmi

k
(ξi). (23)

The first few 2-D Hermite polynomials for two uncertain model parameters (d = 2), are
given by


o(ξ) = ψo(ξ1)ψo(ξ2) = 1,


1(ξ) = ψ1(ξ1)ψo(ξ2) = ξ1,


2(ξ) = ψo(ξ1)ψ1(ξ2) = ξ2,


3(ξ) = ψ2(ξ1)ψo(ξ2) = ξ 21 − 1,


4(ξ) = ψ1(ξ1)ψ1(ξ2) = ξ1ξ2,


5(ξ) = ψo(ξ1)ψ2(ξ2) = ξ 22 − 1. (24)
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We compute the coefficients fi,k of the corresponding PCE in Equation (20) to describe how
the model predictions are dependent on the uncertain model parameters. To this end, we
truncate Equation (20) to P terms and estimate the coefficients fi.k using the least squares
regression method [23]. In this method, ξ (j), j = 1, . . . ,N realizations are chosen using
Smolyak quadrature [38] on which deterministic calculations are performed. The PCE
coefficients can be obtained with reasonable accuracy using fewer quadrature points on
Smolyak grid even for high dimensional problems. For example, if the number of uncer-
tain parameters is d = 6, the number of deterministic models required is 85, for d = 7,
the number of deterministic models required is 113, for d = 8, the number of determin-
istic models required is 145, and for d = 9, 181 deterministic simulations are required to
obtain the PCE coefficients with comparable accuracy. Thereafter the coefficients fi,k are
determined from

fi(x, y, z, t, ξ (j)) =
P∑

k=0

fi,k(x, y, z, t)
k(ξ
(j)), (25)

where j = 1, . . . ,N, tominimize the sum of residuals. Denoting the terms in Equation (25)
as,

f =

⎡
⎢⎣
fi(x, y, z, t, ξ (1))

...
fi(x, y, z, t, ξ (N))

⎤
⎥⎦ , f̂ =

⎡
⎢⎣
fi,o(x, y, z, t)

...
fi,P(x, y, z, t)

⎤
⎥⎦

and Z =

⎡
⎢⎣
ψo(ξ

(1)) . . . ψP(ξ
(1))

...
. . .

...
ψo(ξ

(N)) . . . ψP(ξ
(N))

⎤
⎥⎦ ,

(26)

Equation (25) can be written in a compact matrix notation as

f = Zf̂ . (27)

The coefficients are computed using the least squares approach by

f̂ = (ZTZ)−1ZTf . (28)

Solving for the coefficients of PCE yields the proxy model for the actual reservoir model.
Thereafter, we use the proxy model in Equation (15) to predict the production variable
di, which accelerates the solution of inverse problem. In addition, knowing the PCEs we
can also compute the various statistical moments such as mean and standard deviation in
the model predictions. The mean is given by the zeroth-order coefficient f̂i,0 because the
expectation 〈
k〉 = 0 for k>0 and the standard deviation is calculated using the higher-
order coefficients. The standard deviation of i-th model prediction is calculated by,

σ 2
i = 〈

(f̂i −
〈
f̂i
〉
)2

〉 =
P∑

k=1

f̂ 2i,k
〈

2

k
〉
. (29)

On grouping the terms in Equation (29) corresponding to the same stochastic dimension,
the contribution of each uncertain model parameter to the overall variability in model
predictions can be acquired.
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3. Results and discussion

In this section, we present the application of the accelerated Bayesian inference method
using the PCE proxy on three model problems. First, we demonstrate the application of
the method for history matching on a three-dimensional, three layered black-oil reservoir
model to predict the porosity and absolute permeability. Thereafter, we present history
matching of a three-dimensional, fifteen layered water flooding black-oil model to predict
the exponents of relative permeability curves of oil and water. Finally, we demonstrate the
applicability of our framework on a large-dimensional real field-based PUNQ-S3 reservoir
model to perform history matching and predict 26 model parameters.

3.1. Case 1. SPE1CASE2 reservoir model

First, we discuss the reservoir model on which we demonstrate the application of PCE-
based Bayesian inference to predict the values of porosity and permeability. As a model
problem, we consider the standard SPE1CASE2 model of SPE’s Comparative Solution
Projects [34], which is a three-dimensional black-oil reservoir simulation model. The
geometry of the reservoir, the stratification, and reservoir properties are illustrated in
Figure 1. The reservoir is discretized into 10 × 10 grid blocks in x and y directions. All
the grid blocks are of 1000 × 1000 feet in x and y directions. The reservoir is 100 feet deep
in the z-direction. There are three layers in the z-direction and each layer represents a grid
block. The top, middle and bottom layers are 20, 30 and 50 feet deep respectively. All the
layers have the same porosity but distinct permeability. There is one injection well located
at grid block (1, 1, 1) and one production well at (10, 10, 3) as shown in Figure 1.

Initially, the reservoir is under-saturated with gas. The initial oil and water saturations
are 0.88 and 0.12, respectively. Gas is injected at the injection well at a constant injection
rate of 100 mmscf/day. Oil is produced at the production well at a constraint of maximum
production rate of 20,000 stb/day, and the minimum flowing bottom hole pressure for the
production well is 1000 psia. All reservoir boundaries, except the wells, are impermeable.

Figure 1. Reservoir geometry showing the stratification and reservoir properties for the SPE1CASE2
problem. The values of porosity and permeability at each grid block for the standard SPE1CASE2 prob-
lem are shown in the figure. In the current work, we consider the values of porosity of the reservoir and
permeability of the top layer as uncertain and estimate them using history matching.
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The initial reservoir pressure is 4800 psia at a depth of 8400 feet. The simulations are run
for a period of 10 years, and data are saved at an interval of one month.

3.2. Case 1. SPE1CASE2 problem description

To perform historymatching, it is important to understand the flow physics of the problem
and the parameters on which the simulation predictions are more sensitive. Therefore, we
first run a deterministic simulation on the reservoir model to present a brief discussion of
the physics of the problem. For this deterministic simulation, we took the permeabilities of
top, middle, and bottom layers as 500 mD, 50 mD, and 200 mD, respectively. The porosity
of each layer is 0.3.

The phase behaviour properties for the simulation are taken from the standard prob-
lem [34]. The gas is injected at a constant rate of 100 mmscf/day in the injection well, and
oil is produced at a maximum oil production rate (OPR) of 20,000 stb/day. Figure 2(a)
shows the deterministic OPR (σ = 0) for a time period of 10 years. As the gas is injected
at a constant rate of 100 mmscf/day into the injection well, the oil is displaced horizontally
towards the production well. When the oil reaches the production well, the production of
oil starts at the maximum rate of 20,000 stb/day for a time period of 52 months. As the
oil production takes place from the reservoir, the pressure inside the reservoir continu-
ously falls and reaches the minimum flowing bottom hole pressure of 1000 psia. Due to
the fall in pressure inside the reservoir, the OPR starts decreasing from its maximum rate.
Meanwhile, the injected gas also reaches the other end of the top layer, and due to con-
tinuous injection, it moves towards the bottom layer and reaches the production well at
about t = 43 months. Figure 2(b) shows the gas production rate (GPR) for the determin-
istic simulation. Along with the production of oil, concurrently, gas is also produced from
the production well. Initially, the gas that is dissolved in the reservoir oil is produced, but
once the injected gas reaches the production well, the GPR increases suddenly at t = 43
months, as shown in Figure 2(b).

3.3. Validation of PCEmethodwithMonte Carlo simulations

After getting an insight into the physics of the fluid flow in the reservoir, we first validate
our PCE methodology by comparing it with Monte Carlo (MC) simulations. For that, we
solved the forward problem with a prior distribution of porosity and layer permeabilities.
For our calculations, we assumed that the porosity of the whole reservoir and permeabil-
ity of each layer are independent, log-normally distributed random variables. The mean
value of the porosity of each layer was assumed to be 0.3, and the permeability of the top,
middle, and bottom layers were taken as 500 mD, 50 mD, and 200 mD respectively as
labelled in Figure 1. We assumed a 20% standard deviation around the mean values of
porosity and permeability of each layer of the reservoir. First, we performed MC simu-
lations and calculated the mean and standard deviation of model predictions. To obtain
convergence of the MC method, we required 10,000 deterministic simulation runs. Next,
we used the PCEmethod to find themean and standard deviation ofmodel predictions and
compared the two. We represented the model predictions using fourth-order PCEs which
were sufficiently accurate in describing the effect of variability of the model parameters on
themodel predictions. The fourth-order PCE for the four random variables consisted of 70
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Figure 2. Comparison of mean and standard deviation in production variables predicted by 10,000 MC
simulations and 385 PCE simulations for SPE1CASE2 problem. (a) and (b) show the mean values of OPR
and GPR versus time. (c) and (d) show the standard deviation in OPR and GPR versus time. Themean and
standard deviation converge well for fourth-order PCE simulations with 385 collocation points for four
uncertain parameters with 10,000 MC simulations. The contribution of individual uncertainties in the
model parameters are also shown in (c) and (d). The effect of porosity and permeability is shown, where
φ is the porosity, k1, k2, and k3 are the permeability of the top, middle and bottom layers respectively.
OPR is most sensitive to porosity followed by the permeability of bottom-most layer, topmost layer and
least sensitive to themiddle layer. GPR is most sensitive to porosity followed by permeability of topmost
layer, bottom-most layer and least sensitive to the middle layer.

coefficients. The computation of these 70 coefficients required 385 simulations using the
stochastic collocation method based on Smolyak quadrature [38].

Figure 2(a,b) shows the mean values of OPR and GPR with time. Figure 2(c,d) shows
the variation of the standard deviation of OPR and GPRwith time. These figures show that
the results obtained from fourth-order PCE for 385 deterministic simulations match well
with 10,000 MC simulations. Therefore, PCE can be used as a proxy model in reservoir
simulations. We also observe in Figure 2(a ,b) that the mean values of production show
more dispersion in contrast to the sudden change in rates in the deterministic simulation.
Due to the effect of variability, the discontinuities disappear in the mean production pro-
files. This is in agreement with the simulation results of Zhang and Tchelepi [39], who
showed similar dispersion in mean production profiles for the Buckley–Leverett problem.

3.4. Sensitivity analysis of simulation predictions tomodel parameters

Having validated the PCE method with MC simulations, we present a sensitivity analysis
of model predictions to model parameters. In Figure 2(c), we show the standard deviation
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in the OPR due to uncertainty in porosity and layer permeabilities. In the present prob-
lem, the OPR is most sensitive to the porosity of the reservoir. This is expected because
the production potential directly depends on the total hydrocarbon content in the reser-
voir which depends on the porosity. After porosity, the OPR is sensitive to permeability of
the bottom-most layer, followed by the permeability of the topmost layer with an almost
negligible contribution of permeability of the middle layer.

Figure 2(d) shows the sensitivity of the GPR to the porosity and permeability of each
layer. Similar to the OPR, the GPR is also most sensitive to the porosity of the reservoir.
In contrast to the OPR, after porosity, the GPR is more sensitive to the permeability of
the topmost layer as compared to the bottom-most layer. The observations from sensi-
tivity analysis suggest that, to predict the permeability of the bottom-most layer we need
to perform history matching on the OPR, whereas to predict permeability of the topmost
layer, we need to perform history matching on GPR. Also, the standard deviation of GPR
is higher than OPR, which tells that GPR is more sensitive to model parameters than OPR.

3.5. Historymatching

We now present Bayesian inference along with PCE proxy for history matching. As shown
by the sensitivity analysis, the GPR is more sensitive to the model parameters than the
OPR. Hence, we took the GPR as the measured data to predict the posterior values of per-
meability and porosity. Also, the sensitivity analysis shows that the GPR is more sensitive
to the porosity of the reservoir and permeability of the topmost layer. Therefore, we limit
our inverse problem to predicting porosity and permeability of topmost layer. To get the
synthetic measured data to perform history matching, we performed a deterministic sim-
ulation on a fixed value of porosity and permeability which we call as the true value and
added noise to it. The simulation period to obtain the history data was for 10 years and sim-
ulation for another 10 years was performed to evaluate the prediction performance of the
model. The model parameter values used to obtain the synthetic reference case of GPR are
listed in Table 1. The GPR obtained using the true values of model parameters are shown
in Figure 3. We added Gaussian noise with σ = 5000 mscf/day to the true values of GPR,
as shown in Figure 3, and considered the resulting data as the production history. In the
petroleum industry, measured data is not available at all times. Therefore to limit the data,
we took the measured data at time intervals of five months. To get the proxy model of GPR
for solving the inverse problem, we considered an uncorrelated prior probability distribu-
tions of porosity and permeability which were log-normally distributed with mean values
of 0.3 and 500 mD, respectively, with a standard deviation of 20% around the mean values
as shown in Figure 3. Based on this prior probability distribution, we first obtained the PCE
proxy for the production forecast, i.e. GPR. We represented the model predictions using
fourth-order PCEswhich consisted of fifteen coefficients for the two randomvariables. The
convergence of the PCE coefficients is presented in Figure A1 in Appendix A.We chose fif-
teen coefficients, which were sufficient to obtain the PCE proxy. The computation of these
fifteen coefficients required 89 simulations using the stochastic collocation method based
on Smolyak quadrature [38]. From Figure 3, we observe that there is a mismatch between
the GPR obtained on the prior mean values on which the PCE proxy is developed and the
measured data.
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Table 1. The parameters used for history matching in the SPE1CASE2 model are shown. The measured
data was obtained by adding noise to the true values. Themean and standard deviation of the prior and
posterior distribution is shownhere. Prior valueswere used to get the proxymodel. The proxymodelwas
used to calculate the posterior mean by solving the inverse problem using Bayesian inference.

Prior Posterior estimate

Parameters Layer True value mean standard deviation range mean standard deviation

Porosity 1 – 3 0.27 0.3 ± 0.06 0.12 – 0.66 0.26 ± 0.01
Permeability (mD) 1 450 500 ±100 215 – 1114 436.28 ± 21.08

Figure 3. Comparison of predicted values of GPR versus time with the measured data and predictions
based on the true values for SPE1CASE2 problem. The measured data was obtained by adding noise on
GPR obtained using the true values for the first 10 years. The GPR predicted with prior mean values of
model parameters does not match with the measured data. However, the temporal evaluation of GPR
predicted by the posterior mean values shows good agreement with the model predictions based on
measured data.

To obtain the posterior estimate of model parameters, we used theMetropolis-Hastings
algorithm to get 50,000 samples from the posterior distribution of porosity and perme-
ability. We used the PCE proxy for calculation of GPR at the sampled values of model
parameters, which accelerated the sampling from the posterior distribution. Once we
obtained the posterior distribution, we calculated the posterior mean by taking average of
all the samples and then calculated the standard deviation of themodel parameters. Table 1
shows the posteriormean estimate and the standard deviation of themodel parameters.We
get a closer estimate of the true values in posterior distribution, even though our prior esti-
mates were not close to the true values. Figure 3 shows that the GPR obtained using the
posteriormean values in the proxymodel is very close to themeasured data as compared to
the GPR obtained on the prior values. Figure 3 also shows that the prediction performance
for the next 10 years matches well with the true GPR.

Figure 4 shows the prior and posterior probability density of porosity and permeability
obtained using the Bayesian inferencemethod. Startingwith a broader prior distribution of
the model parameters, we obtained a narrower posterior distribution. The posterior values
lie closer to the true values as compared to the prior values, as shown in Table 1. After
historymatching, themodel parameter values converge to the true values and the predicted
variances also decrease after historymatching as shown in Figure 4 and its inset. The shape
of the posterior distribution also gives information on how the porosity and permeability
values must be tweaked to match model predictions with production data. From Figure 4,
we observe that both porosity and permeability must increase or decrease simultaneously
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Figure 4. Comparisonof prior andposterior probability density of porosity of reservoir andpermeability
of the topmost layer for SPE1CASE2 problem. (a) shows the prior probability of porosity of the reservoir
and permeability of the topmost layer. The black colour corresponds to high values and the white colour
corresponds to low values. The inset (b) shows the zoomed-in view of the samples obtained from the
posterior distribution. Starting from a broad prior distribution, Bayesian inference results in a narrow
distribution of permeability of the topmost layer and porosity of the reservoir.

to match the history data. This can be interpreted as follows. For a fixed value of porosity,
when the permeability is increased the injected gas can flow easily through the reservoir,
hence, the breakthrough of gas occurs earlier and more gas is produced. However, for a
fixed permeability, if porosity is increased, it means that more oil is initially present in the
reservoir. Hence, maximum oil production takes place from the reservoir for a longer time
and the breakthrough of the gas is delayed. Increasing porosity, therefore leads to reduction
in GPR. Therefore, to produce the same amount of gas, an earlier breakthrough must take
place for which the permeability of the layer should be higher.

3.6. Case 2. SPE9 reservoir model and problem description

After successfully performing Bayesian inference to predict the porosity and permeabil-
ity of a reservoir model, we now consider a history matching problem of estimating other
parameters such as exponents of relative permeability curves of oil and water. To this end,
we consider SPE9 [40] reservoir model, which is a model of moderate size (9000 grid
blocks) and with a high degree of heterogeneity provided by a geostatically based perme-
ability field. The reservoir geometry is shown in Figure 5. The reservoir model is based
on a dipping reservoir with 25 randomly placed production wells and one water injection
well placed at grid points I = 24, J = 25, and K value for the connecting grid blocks varies
from 11 to 15. The cells dip in the x direction at an angle of 10◦. The production wells
are present in layers 2, 3 and 4 only. There are fifteen layers in the reservoir with constant
porosity values in each layer, and a geostatically generated permeability field on a cell by cell
basis. The simulation time to perform history matching is 900 days and the performance
of the history matched model is evaluated for the next 900 days. The water injector is set
to a maximum rate of 5000 stb/day with a maximum bottom hole pressure of 4000 psia.
The maximum oil production rate for all production wells is set at 1500 stb/day, and the
minimum flowing bottomhole pressure for all production wells is 1000 psia. At 300 days,
the maximum oil production rate is lowered to 100 stb/day for all wells. At 360 days, the
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Figure 5. Geometry of water flooding SPE9 reservoir model along with the initial oil saturation. This
problem involves a dipping reservoir with 25 randomly placed producing wells and one water injection
well. Here we perform history matching on this reservoir model to estimate the values of exponents of
the Corey model for the relative permeability curves of oil (Now) and water (Nw) by solving an inverse
problem using history matching.

Figure 6. Thedependenceof relativepermeability curveson thevaluesof exponentsof theCoreymodel
given by Equations (9)–(11) for SPE9 problem. The decreasing curves correspond to the relative perme-
ability of oil (Krow) for varying exponents Now . For a fixed value of water saturation (Sw), increasing the
value of Now reduces the relative permeability of oil. The other set of curves correspond to the relative
permeability of water (Krw). Similar to oil, increasing the value of Nw reduces the relative permeability
of water. For these curves, we used the values of connate water saturation to be 0.18 and residual oil
saturation to be 0.88.

maximum oil production rate is again raised to 1500 stb/day for all wells until the end of
simulation. The phase behaviour properties of the oil, water, and gas are taken from Kil-
lough et al. [40]. The relative permeability curves are given by Brooks-Corey correlation
given by Equations (9) to (11).

In this inverse problem, we predict the exponents (Now and Nw) of Brooks–Corey cor-
relations of the relative permeability curves of oil and water. Figure 6 shows the effect of
varying the exponents of relative permeability curves of oil and water given by the Brooks-
Corey correlations. For higher values ofNw in Equation (9), the relative permeability curve
of water shifts to the right of the curve, as shown in Figure 6. Therefore, for the same satu-
ration of water, the relative permeability of water decreases. This leads to a decrease in the
flow rate of water, hence a decrease in water production rate. Likewise, an increase in the
exponent Now of Equation (10), causes the relative permeability curve of oil to shift to the
left of the curve, as shown in Figure 6. Hence, for the same saturation of water, the relative
permeability of oil decreases with an increase inNow, which slows down the flow of oil and
decreases the FOPR.
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Table 2. The parameters used for historymatching in the SPE9model. Themeasured datawas obtained
by adding noise to the simulations performed using the true values. Prior values were used to get
the proxy model. The mean and standard deviation of the prior values are shown here. The proxy
model was used to calculate the posterior values by solving the inverse problem using Bayesian
inference.

Prior Posterior estimate

Parameters True value mean standard deviation range mean standard deviation

Nw 1.5 3.5 ± 1.5 0.9 – 6 1.63 ± 0.12
Now 1.5 3.5 ± 1.5 0.9 – 6 1.56 ± 0.29

3.7. Sensitivity of simulation predictions tomodel parameters

Before performing Bayesian inference, we look at the sensitivity of the model predic-
tions to the model parameters. For our calculations, we considered both Nw and Now as
uncorrelated normally distributed random variables with mean values of 3.5 and standard
deviation of 1.5, respectively. For all our computations, we represented the model pre-
dictions using fourth-order PCEs. The fourth-order PCE consisted of fifteen coefficients
for two random variables. The computation of these fifteen coefficients required 25 sim-
ulations using the stochastic collocation method based on Smolyak quadrature [38]. We
obtained the mean and standard deviation for field oil production rate (FOPR) and field
water production rate (FWPR).

Figure 7(a,b) shows the mean FOPR and mean FWPR, respectively. The mean
profiles are obtained as per the control set on the production well as discussed in
Section 3.6. Figure 7(c,d) shows the standard deviation in FOPR and FWPR, respec-
tively. Similar to the first problem, the standard deviation in model predictions is high-
est at the time when the production rate is suddenly reduced at 300 days, as shown
in Figure 7(c,d). From Figure 7(c), we can also observe that FOPR is more sensitive
to Now whereas FWPR is more sensitive to Nw. This is because a change in expo-
nent alters the relative permeability curve of that particular fluid. Therefore, to pre-
dict the value of the two constants, if we perform history matching on the FOPR, we
expect to get a better estimate of Now, whereas if we perform history matching on
the FWPR, we get a better prediction of Nw. Therefore, to predict accurate values for
both the parameters, we take the measured data of both FOPR and FWPR for history
matching.

3.8. Historymatching

As suggested by the sensitivity analysis, we chose production data of FOPR and FWPR for
history matching. We chose a true value of Nw and Now as shown in Table 2. The FOPR
and FWPR for true values of Nw and Now is shown in Figure 8(a,b) respectively. To get
the measured data, we added Gaussian random noise with σ = 1000 stb/day for FOPR
and σ = 200 stb/day for FWPR. The measured values of FOPR and FWPR are shown in
Figure 8(a,b) respectively. We took the prior mean and standard deviation of Nw and Now
as shown in Table 2. The FOPR and FWPR for prior values of Nw and Now is shown in
Figure 8(a,b) respectively. We observe that the prior values of FOPR and FWPR do not
match with themeasured data. Based on the prior distribution ofNw andNow, we obtained
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Figure 7. Sensitivity of FOPR and FWPR on Nw and Now . (a) and (b) show the mean values of FOPR and
FWPR versus time. The oil and water production rate is obtained as per the boundary conditions set on
the production wells. (c) shows the standard deviation in FOPR versus time and sensitivity of FOPR to
Nw and Now . Now is the dominant factor to the overall variation in FOPR at all times. (d) shows standard
deviation in FWPR versus time and sensitivity of FWPR to Nw and Now . Nw is the dominant factor to the
overall variation in FWPR at all times.

the PCE proxy for the forward model as discussed in Section 2.2. Thereafter, we obtained
100,000 samples of the posterior distribution using MCMC, and predicted the exponents
of the relative permeability curves. Data presented in Table 2 shows that the predicted pos-
teriormean values ofNw andNow are very close to the true value. This shows the efficacy of
themethod in predicting various uncertain parameters. Figure 8 shows the posterior FOPR
and FWPR obtained after solving the inverse problem for the history matching period and
the prediction period. It shows that the FOPR and FWPR obtained on the posterior model
parameters are very close to themeasured history data and the predicted data matches well
with the true data.

3.9. Case 3. PUNQ-S3 reservoir model and problem description

After successfully performing history matching on simplistic reservoir models, we now
consider a real field-based reservoir model PUNQ-S3, operated by Elf Exploration Pro-
duction [4]. We chose the PUNQ-S3 test case because the performance of various history
matching techniques have been reported in literature for this model. This model contains
19 × 28 × 5 grid blocks, out of which 1761 blocks are active. The reservoir field is bounded
to the east and south by a fault and links to a strong aquifer in the north and west. The field
requires no injection well because of the strong pressure support from the aquifer and six
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Figure 8. Comparisonof predicted values of FOPRandFWPRversus timeusingpriormeanandposterior
mean values of model parameters with the measured data for SPE9 problem. The measured data were
obtained by adding noise on the model predictions obtained using the true values. (a) shows that the
FOPR predicted with prior mean values of model parameters does not match with the measured data.
However, after history matching, the FOPR predicted by the posterior mean values shows good agree-
ment with the model predictions based on the measured data. Also, the prediction data for the next 10
years match well with the true data. Similarly, (b) shows that the FWPR predicted with prior mean val-
ues of model parameters does not match with the measured data. However, after history matching, the
FWPR predicted by the posterior mean values shows good agreement with themodel predictions based
on the measured data.

producer wells are present. The producer wells are present around the gas-oil contact in the
centre of the reservoir as shown in Figure 9. In this test case, the porosity and permeabil-
ity fields are taken from the original reservoir models. However, the relative permeability
and capillary pressure curves are taken from a modified model of the PUNQ-S3 model
presented by Zhang et al.[41]. In the modified model, the power-law model is used to rep-
resent the relative permeability and capillary pressure curves. In this model problem, the
production schedule of the wells has been taken from the original model which involves a
simulation period of 16.5 years. The production history of the first 8 years is used to pre-
dict the model parameters and predict the production for the next 8.5 years. The first 8
years include the first year of well testing, followed by 3 years of shut-in period and 4 years
of the production period. The oil production rate of 150 m3/day is fixed during the pro-
duction period and a two-week shut-in period is applied each year to collect the shut-in
pressure data.

The two-phase oil-water relative permeability and capillary pressure curves in the
modified models are represented as

krw(Sw) = aw
(

Sw − Swi
1 − Swi − Sorw

)nw
, (30)

krow(Sw) = aow
(
1 − Sw − Sorw
1 − Swi − Sorw

)now
, (31)

and

Pcow(Sw) = P∗
cow

(
1 − Sw − Sorw
1 − Swi − Sorw

)ncow
+ Pceow. (32)
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Here, Swi is the irreduciblewater saturation, Sorw is the irreducible oil saturation, aw and aow
are the endpoints of water relative permeability curve and oil relative permeability curve
respectively. The exponents nw and now are empirical constants that denote the curvature
of the relative permeability curve of water and oil respectively. In Equation (32), Pceow is
the entry capillary pressure of the oil-water system, ncow is the exponent that determines
the curvature and P∗

cow + Pceow is the capillary pressure at the irreducible water saturation.
Likewise, two-phase gas-oil relative permeability and capillary pressure curves can be

expressed as

krg(Sg) = ag
(

Sg − Sgc
1 − Sorg − Swi − Sgc

)nrg
, (33)

krog(Sg) = aog
(
1 − Sorg − Swi − Sg
1 − Sorg − Swi − Sgc

)nrog
, (34)

and

Pcog(Sg) = P∗
cog

(
Sg − Sgc

1 − Sorg − Swi − Sgc

)ncog
+ Pceog . (35)

Here, Sgc is the critical gas saturation, Sorg is the residual oil saturation in the oil–gas system,
ag and aog are the endpoint of the gas relative permeability and oil relative permeability

Table 3. The parameters used for history matching in the PUNQ-S3 model are shown. The measured
data was obtained by adding noise to the true values. Themean and standard deviation of the prior and
posterior distribution is shownhere. Prior valueswere used to get the proxymodel. The proxymodelwas
used to calculate the posterior estimates by solving the inverse problem using Bayesian inference.

Prior Posterior estimate

Parameters Layer True value mean standard deviation range mean standard deviation

aw – 0.72 0.67 ±0.067 0.56–0.77 0.73 ±0.03
nw – 4.32 4 ±0.4 2.8–3.8 4.5 ±0.22
aow – 0.93 0.93 ±0.086 0.73–0.98 0.82 ± 0.06
now – 4.32 4 ±0.4 3.3–4.5 4.3 ± 0.18
ncow – 4.32 4 ±0.4 3.4–4.6 4.2 ±0.03
ag – 0.32 0.3 ±0.03 0.25-0.34 0.47 ± 0.05
nrg – 4.32 4 ±0.4 3.4–4.6 4.1 ± 0.25
aog – 2.16 2 ±0.2 1.7–2.3 1.8 ±0.34
nrog – 4.32 4 ±0.4 2.7–3.7 4.3 ±0.05
ncog – 4.32 3 ±0.4 2.5–3.4 4.5 ±0.23
Pceog – 6.48 6 ±0.6 5.1–6.9 6.2 ±0.43
Porosity 1 1 0.8 ±0.3 0.5–1.1 1.01 ±0.01
Porosity 2 1 0.8 ±0.3 0.5–1.1 0.94 ±0.04
Porosity 3 1 0.8 ±0.3 0.5–1.1 0.95 ±0.07
Porosity 4 1 0.8 ±0.3 0.5–1.1 0.95 ±0.07
Porosity 5 1 0.8 ±0.3 0.5–1.1 0.97 ±0.02
x-Permeability 1 1 0.8 ±0.3 0.5–1.1 0.97 ±0.09
x-Permeability 2 1 0.8 ±0.3 0.5–1.1 0.98 ± 0.08
x-Permeability 3 1 0.8 ±0.3 0.5–1.1 0.98 ± 0.08
x-Permeability 4 1 0.8 ±0.3 0.5–1.1 0.98 ± 0.02
x-Permeability 5 1 0.8 ±0.3 0.5–1.1 0.98 ± 0.03
z-Permeability 1 1 0.8 ±0.3 0.5–1.1 0.98 ± 0.03
z-Permeability 2 1 0.8 ±0.3 0.5–1.1 0.98 ± 0.03
z-Permeability 3 1 0.8 ±0.3 0.5–1.1 0.98 ± 0.04
z-Permeability 4 1 0.8 ±0.3 0.5–1.1 0.98 ± 0.05
z-Permeability 5 1 0.8 ±0.3 0.5–1.1 0.99 ± 0.05
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Figure 9. Geometry of the PUNQ-S3 reservoir model showing the well locations and the top structure
depth (in metres).

Figure 10. Mean values of the production parameters (a), (b) and (c) show the mean values of cumula-
tive FOPT, FGPT and FWPT versus time for 8 years of production period. (d) show the mean bottom hole
pressure of well PRO-1 with time during the 8 years of production period.

curve for the oil–gas system. The exponents nrg , nrog and ncog determine the curvature of
the curves. P∗

cog + Pceog is the capillary pressure at maximum gas saturation for the oil–gas
system.
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Figure 11. Sensitivity of FOPT, FGPT, FWPR and WBHP-PRO1 on the uncertain model parameters. (a),
(b) and (c) show the standard deviation in FOPT, FGPT and FWPT versus time and their sensitivity to the
model parameters. ncow is the dominant factor to the overall variation in FOPT and FGPT at all times
whereas FWPT is most sensitive to nrg. (d) shows standard deviation in WBHP of well PRO-1 versus time
and sensitivity of WBHP to the model parameters.

To perform history matching and predict model parameters in the PUNQ-S3 model
we chose 26 uncertain model parameters. The first set of uncertain parameters are the
constants in the relative permeability and capillary pressure curves of the oil-water and
gas–oil system given in Equations (30)–(35). These constants are aw, nw, aow, now, ncow, ag ,
nrg , aog , nrog , ncog , Pceog . For the next set of model parameters, we used the porosity and
permeability field of the original reservoir model for all 5 layers. To assume uncertainty in
the porosity and permeability fields, we assumed porosity and permeabilitymultipliers in x
and z directions to be uncertain. So, we have fifteen uncertain parameters corresponding to
the five porositymultipliers in the five layers, five permeabilitymultipliers in the x direction
and five permeability multipliers in the z direction for the five layers.

3.10. Sensitivity analysis of simulation predictions tomodel parameters

Before solving the inverse problem, we analyse the sensitivity of model predictions to the
model parameters. The mean values and standard deviation of the normally distributed
uncertain parameters are shown in Table 3. In this case, we represented the model param-
eters using first-order PCEs. The first-order PCE consisted of 27 coefficients for 26 random
variables. The computation of these 27 coefficients required 53 simulations using the
stochastic collocation method based on Smolyak quadrature. We obtained the mean and
standard deviation for the cumulative field oil production (FOPT), cumulative field gas
production (FGPT), cumulative field water production (FWPT)) and the bottom hole
pressure of well PRO-1 (WBHP PRO-1).
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Figure 10(a–d) shows the mean FOPT, FGPT, FWPT and mean BHP of well PRO-1,
respectively. The mean profiles are obtained as per the control set on the production wells
as discussed in Section 3.9. The simulation starts with 1 year of well testing period followed
by 3 years of shut-in period where the cumulative production of oil, gas and water remains
constant and then followed by 4 years of the production period. The bottom hole pres-
sure is set at a minimum constraint of 12.0 MPa. Figure 11(a–d) shows the sensitivity of
FOPT, FGPT, FWPT andWBHP PRO-1 to the different uncertain model parameters. The
main parameters contributing to the uncertainty in the model predictions are ncow, now,
the porosity of the top layer, nrg , and permeability of the fourth layer. The porosity of the
top layer contributes more to the total uncertainty as the original reservoir model has the
highest porosity in the top layer. The permeability of the fourth layer has the maximum
contribution as all the wells are present in this layer in the reservoir model. Therefore,
to predict the production from the reservoir, the most sensitive model parameters need

Figure 12. Comparison of predicted values of FOPT, FGPT, FWPT and WBHP-PRO1 versus time using
prior mean and posterior mean values of model parameters with the measured data for PUNQ-S3 prob-
lem. The measured data were obtained by adding noise on the model predictions obtained using the
true values for the first 8 years of production. (a) shows that the FOPT predicted with prior mean values
ofmodel parameters does notmatchwith themeasured data. However, after historymatching, the FOPT
predicted by the posteriormean values shows good agreementwith themodel predictions based on the
measured data. Also the predicted FOPT matches well with the true value of FOPT on which noise was
added to obtain the history data. Similarly, (b) shows that the FGPT predicted with prior mean values of
model parameters does not match with the measured data. However, after history matching, the FGPT
predicted by the posterior mean values shows good agreement with the model predictions based on
the measured data. (c) and (d) show that the predicted FWPT and WBHP-PRO1 do not match with their
prior values but match well with the measured data and the posterior matches well with the true data
during prediction period.
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Figure 13. Convergence of 1millionMCMC samples for the PUNQ-S3 problem. (a)Markov chain conver-
gence for aow and now . (b) Markov chain convergence for porosity multiplier of first (poro1) and second
(poro2) layer. (c) Markov chain convergence for x permeability multiplier of first (permx1) and second
(permx2) layer. (d) Markov chain convergence for z permeability multiplier of first (permz1) and second
(permz2) layer.

to be estimated accurately. To estimate multiple model parameters, we need multiple his-
tory data. Therefore, we have used the production data of oil, gas, water and, bottom-hole
pressure for all the wells to predict the model parameters.

3.11. Historymatching

As suggested by the sensitivity analysis, we chose production data of FOPT, FGPT, FWPT,
and bottom-hole pressure for all the wells to perform history matching. First, we chose a
true value of all the model parameters as shown in Table 3. To generate the data against
which we perform history matching, we performed deterministic simulations using the
model parameters shown in Table 3, which we consider as the true values of these parame-
ters. The FOPT, FGPT, FWPT andWBHP PRO-1 for true values of model parameters are
shown in Figure 12(a–d) respectively. The production data was generated by adding Gaus-
sian random noise to the production data from the deterministic simulation. The standard
deviation for the noise is σ = 1% of the maximum value of the corresponding produc-
tion data. The measured values of FOPT, FGPT, FWPT, and WBHP PRO-1 are shown
in Figure 12(a–d) respectively. We took the prior mean and standard deviation of the 26
uncertain model parameters as shown in Table 3. The FOPT, FGPT, FWPT, and WBHP
PRO-1 for prior values of the model parameters are shown in Figure 12(a–d) respectively.



26 S. KHATOON ET AL.

We observe that the production data simulated using the prior values of model parame-
ters does not match the true production data. Based on the prior distribution of the model
parameters, we obtained the PCE proxy for the forward model as discussed in Section 2.2.
Thereafter, we obtained one million samples of the posterior distribution using MCMC
which were enough to provide samples from the converged posterior and predicted the
model parameters. The convergence of the Markov chain for few model parameters are
shown in Figure 13(a–d). The data presented in Table 3 show that the predicted posterior
mean values of the model parameters are much closer to the true values than the prior
values. Moreover, the uncertainty range associated with the predicted model parameters is
much lower than the priormodel parameters. This shows the efficacy of themethod in pre-
dicting multiple uncertain parameters. Figure 12(a–d) shows the posterior FOPT, FGPT,
FWPT and WBHP PRO-1 obtained after solving the inverse problem. It shows that the
FOPT, FGPT, FWPT, and WBHP PRO-1 obtained on the posterior model parameters are
very close to the measured history data and are accurate in predicting the production data.

4. Conclusion

In this work, we have described the use of PCEs to accelerate Bayesian inference for his-
tory matching in petroleum reservoir simulations. We have shown that using PCE of
model predictions for uncertain model parameters, as a proxy for actual reservoir sim-
ulation significantly accelerates the solution of inverse problem using Bayesian inference.
As an application of this method, we considered three reservoir model problems based
on the black-oil model. In the first problem, we demonstrated PCE-based approach to
estimate porosity and permeability in SPE1CASE2 problem. In the second case, we con-
sidered a water flooding problem and showed the application of the method to estimate
the exponents of the relative permeability curves of oil and water. For the third case,
we chose a real field-based reservoir model to predict large number of model param-
eters. Our history matching results show that PCEs not only act as excellent proxy
models for the full reservoir models but also enable the proper selection of most sensi-
tive model parameters that must be tuned to match model predictions with production
history.

The use of PCE-based proxy model to solve the inverse problem for history matching
replaces the full reservoir simulation at every step of MCMC sampling with an analytical
expression. The computational cost for evaluating the PCE-based proxymodel is negligible
compared with the actual reservoir simulation. Moreover, construction of PCE for model
predictions requires two orders of magnitude less number of reservoir simulations com-
pared with that required by MCMC sampling. Consequently, the use of PCEs for Bayesian
inference leads to significant reduction in computational time for solving the inverse prob-
lem of history matching. Although, we have shown the applicability of the method for
history matching in black-oil gas injection and water flooding problems, this approach can
also be applied for various other problems in history matching, such as surfactant polymer
flooding [7], history matching of fractured reservoirs [42], and CO2 enhanced oil recov-
ery [43]. In addition to the estimation of spatially constant model parameters, as shown in
this work, this approach can also be used for spatially varying model parameters such as
porosity and permeability.
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The proposed approach has been successfully applied to three reservoir models. Param-
eter prediction of 26 uncertain model parameters has been made on a real field-based
reservoir model PUNQ-S3. These examples illustrate the applicability of our approach
for global history matching of petroleum reservoirs. However, a limitation of the present
method is that its accuracy and computational time are dependent on the dimension of
the model and the sensitivities of model predictions to each uncertain model parameter.
For high dimensional problems, where hundreds of or thousands of local grid proper-
ties are to be adjusted to fine-tune the reservoir model, a large number of simulations
are required to form an accurate PCE proxy. Moreover, the accuracy of estimation of less
sensitive parameters would be low compared with more sensitive parameters.

While we have demonstrated the current work on black-oil models, the framework is
general for all models, and many different model parameters can be predicted. If the pro-
posed methodology is applied to a compositional model, the coefficients in the equation
of state can be the uncertain parameters. In the polymer flooding problem, the uncer-
tain parameters which can be estimated are the viscosity and the shear rate behaviour of
the polymer solution and the polymer properties such as permeability reduction [7]. For
fractured reservoirs, fracture-matrix transfer function parameters and initial saturation
distribution are some of the uncertain parameters which can be estimated.

Note
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Appendix 1. Convergence of PCE coefficients

We evaluated the convergence of PCE coefficients for each case study to choose the order of the
polynomial. We chose the minimum order PCE which was sufficient for the respective problem.
We have added the figures below showing the convergence of PCE coefficients for all the test cases.
FigureA1(a) shows that fifteen PCE coefficients were sufficient forGPR for the SPEICASE2 problem.
Figure A1(b,c) shows that fifteen coefficients were sufficient to obtain the convergence of FOPR and
FWPR in SPE9 problem. Figure A1(d–f) shows that twenty-six coefficients were sufficient to obtain
the convergence of FOPT, FGPT and FWPT in the PUNQ-S3 problem.
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Figure A1. Convergence of PCE coefficients for each test case at two different time instants during the
simulation. (a) and (b) show the convergence of PCE coefficients for GPR and FOPR for the SPE1CASE2
problem. (c) shows the convergence of PCE coefficients for FWPR for the SPE9 problem. (d), (e) and (f )
show the convergence of PCE coefficients for FOPT, FGPT, and FWPT for the PUNQ-S3 problem.

Appendix 2. Validation of ‘Flow’ simulator with ‘Eclipse’

Here, we present the validation of the ‘Flow’ simulatorwith commercially available ‘Eclipse’ software.
We have run the simulations in both the software and the results match well which are presented
below. Figure A2(a,b) shows the FOPR and FGPR simulation output using the ‘Flow’ simulator and
the ‘Eclipse’ software for SPE1CASE2 model problem. Figure A2(c,d) shows the FOPR and FWPR
simulation output using ‘Flow’ and ‘Eclipse’ for SPE9 model problem.
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Figure A2. Comparison of the simulation outputs from the ‘Flow’ simulator and the ‘Eclipse’ software.
The results match well for the two reservoir models. (a) and (b) show the FOPR and FGPR simulation out-
put using the two simulators for the SPE1CASE2 model. (c) and (d) show the FOPR and FWPR simulation
output using the two simulators for the SPE9 model.

Appendix 3. Grid convergence

We have performed grid convergence tests on the model problem of SPE1CASE2 for two grid sizes
of 1000 × 1000 and 3000 × 3000. Figure A3(a,b) shows the simulation output of FOPR and FGPR
for the two grid sizes.

Figure A3. Grid convergence for SPE1CASE2 model for 1000 × 1000 and 3000 × 3000 grid size. (a)
shows the grid convergence for FOPR and (b) shows the grid convergence for FGPR.
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